

Renewable integration ad energy storage

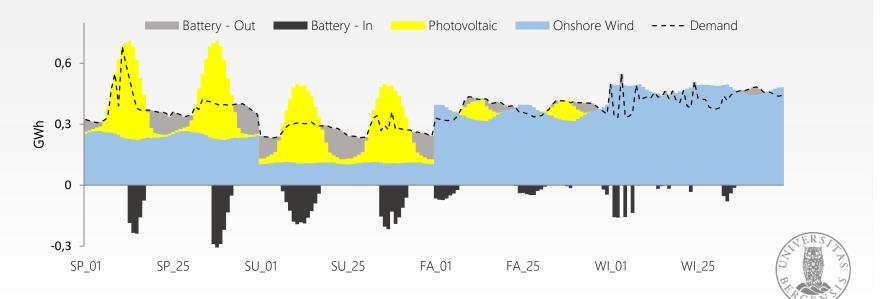
Some examples

Kristin Guldbrandsen Frøysa Energy director kristin.froysa@uib.no

UNIVERSITETET I BERGEN

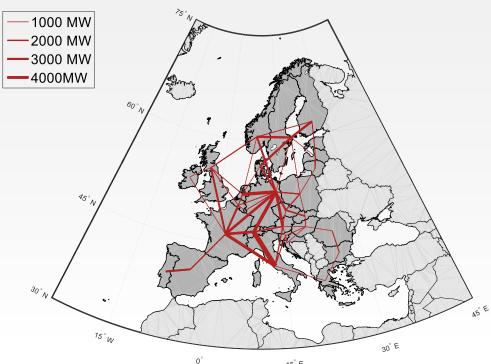
AGF-353 Sustainable Arctic Energy Exploration and Development (5 ECTS) at Unis (Svalbard)

- The course will provide an interdisciplinary survey of tools for assessing the merit, challenges, and risks of different potential renewable energy exploration and development choices in the rapidly changing Arctic.
- Total lecture hours: 30 hours
- Total group exercises and writing sessions: 16 hours
- Excursions and fieldwork: 2 days



Local focus

PhD candidate Hans-Kristian Ringkjøb's work


- Longyearbyen (78.2 ° N) has Norway's only coal-fired power plant
- Study investigates pathways to an energy system based on renewable energy sources in 2050 using a long-term energy model (TIMES)
- Applies stochastic modelling for an adequate representation of short-term wind and solar variability
- A combination of solar & wind with energy storage shows promise for the Arctic settlement

European focus

- Improve the representation of solar and wind variability in long-term energy models (TIMES)
- Increasing temporal resolution vs stochastic modelling
- Value of storage, grid and demand response for integrating variable renewables on a large scale

Improved production from offshore wind An effort across scales and disciplines

Mesoscale	Park scale	Rotor scale	Blade scale
10000 -10 km	10 -1 km	200 - 50m	55m
Days -Hours	20 min - 20 sec	10 – 2 sec	0.5 – 0.01 sec

Norwegian Centre for Offshore Wind Energy

Factor O(20*E06) on time and length scale

Courtesy: Finn Gunnar Nielsen

Providing skilled persons from Norcowe

• MSc (40) and PhD candidates (27).

Put the specialist competence into context:

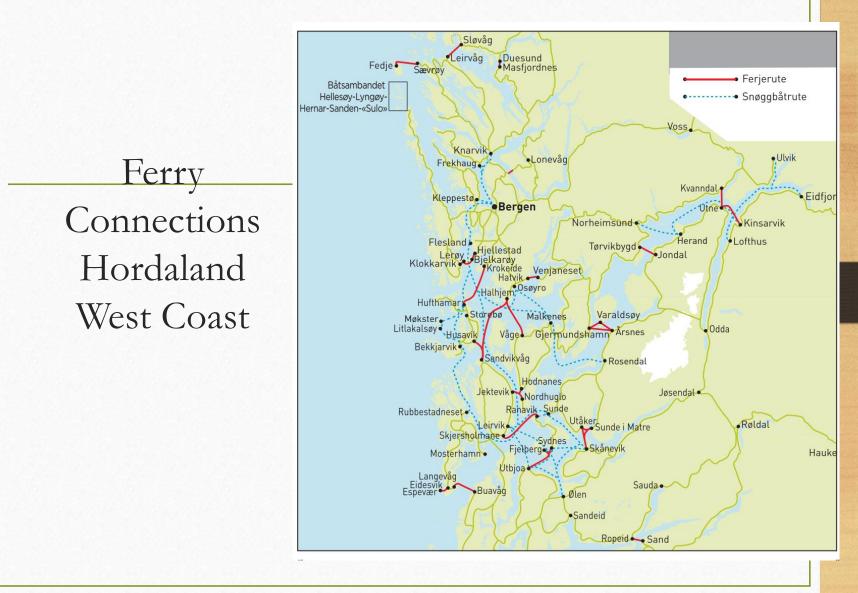
- Summer schools for PhD students, 2010 -2015
- From special topics (LES, 2010) to a cross-disciplinary approach
 - «Wind power engineering», «Offshore challenges», «Innovative methods and concepts», «Harvesting wind energy in a harsh environment»…
- Creating a professional network
- Approx. 100 participants

Example: Hardingasete 2015

Topics:

- Early Phase Development of a wind farm, Kari Lurås, Statoil
- Environmental data for planning & design, Birgitte Furevik, Met
- Harvesting the wind energy, Trond Kvamsdal, NTNU
- The design challenges, Jørgen Krokstad, Statkraft
- **Control of wind turbines & wind farms,** Torben Knudsen, Aalborg University
- Execution of a wind farm project, Jan-Fredrik Stadaas, Statoil
- The economics of wind power, Jørgen Krokstad, Statkraft

Courtesy: Finn Gunnar Nielsen


A student's reflection

• "Talking with the teachers from the industry gives a perspective we do not experience very often in academia. In addition, it is valuable to get acquainted with scientists working with other topics than yourself".

Implementing Carbon Free Ferry Technology on West Coast Norway - The Electrical Route Tom Skauge Western Norway University of Applied Sciences (HVL)

"Rutepakke" Packages for tender	Current / former technology	New technology	Expected CO ₂ reduction	Expected energy reduction	In traffic from
ge 1: Krokeide - Hufthamar Krokeide - Hufthamar Husavik - Sandvikvåg Halhjem - Våge Sløvåg - Leirvåg Fedje - Sævrøy Hatvik - Venjaneset Langevåg - Buavåg	7 diesel ferries, 1 LNG ferry refitted with plug-in hybrid propulsion	8 ferries where an electrical battery is the main energy source, with a biodiesel-generator as back-up for electrical propulsion	87 %	60 %	3 ferries from 01.01.2018, the rea from 01.01.2020
ige 2: Skjersholmane - Ranavik Skjersholmane - Ranavik Jektevik – Nordhuglo -Hodnanes Gjermundshamn - Varaldsøy - Årsnes Jondal - Tørvikbygd	4 diesel ferries, 1 rebuilt diesel-electric hybrid	4 ferries where an electrical battery is the main energy source, with a biodiesel-generator as back up for electrical propulsion, will be built. 1 ferry has been rebuilt for induction charging	90 %	65 %	01.01.2020
ege 3: Klokkarvik - Lerøy - Bjelkarøy - Hjellestad «Fjellbergsambandet»	2 diesel fe rr ies	High degree for electrification	86 %	58 %	01.01.2020
ege 4: Masfjordnes - Duesund	Cable ferry with diesel generator	Fully-electrical ferry	88 %	65 %	01.01.2020
ege 5: Kvanndal - Utne Kinsarvik - Utne Skånevik - Matre – Utåker	3 diesel ferries	High degree for electrification	92 %	74 %	01.01.2020

What factors can explain?

09

How niche electrical technology have been standardized to a new hegemonic sociotechnical regime?

Clean Maritime Transport

- Combining technical, political, social, economic and legal aspects
- Multi-disiplinary approach
- Tripple helix approach
- Summer school
- Internships

